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Microwave Experiments on Chaotic Billiards
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We describe experiments using billiard-shaped microwave cavities, to test ideas
in quantum chaos. The experimental method for observing cavity resonances to
obtain the eigenvalues, and the advantages and limitations of the techniques,
including the influence of absorption, are discussed. An experimental technique
to obtain a 2D mapping of the wavefunction is described. Results are displayed
for 36 of the low-lying wavefunctions of a Sinai billiard cavity consisting of a
central disc in a rectangular enclosure. The wavefunctions demonstrate the
influence of classical periodic orbits (PO), of which there are two types: non-
isolated PO, which avoid the central disc, and isolated PO, which hit the central
disc. Scarred states, including those associated with isolated PO, are directly
observed.

KEY WORDS: Quantum chaos; microwave cavities; sinai billiard; eigen-
functions; eigenvalues; scarred states; periodic orbits.

While significant progress has been achieved on theoretical aspects'’’ of the
quantum or wave mechanics of classically chaotic systems, experimental
work has gathered momentum only recently.® This is because the proper
experimental systems, and the observable signatures of quantum chaos in
particular experiments, need to be identified. While phenomena at the
atomic or subatomic level are obvious experimental candidates, the com-
mon wave nature of electromagnetics and quantum mechanics suggests a
new approach to experiments designed to test observable consequences of
the wave aspects of classical chaos.

The correspondence between quantum mechanical problems and
electromagnetic situations has long been recognized. In two dimensions,
and for stationary time-independent situations, both the Maxwell and
the Schrodinger equations reduce to the scalar Helmholtz equation:
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(V2+k?){E, or } =0. For bound states in closed systems and scattering
states in open systems, the correspondence can be exploited to yield
information on both electromagnetic and quantum mechanical situations.

This paper discusses the basis and results of recent experiments carried
out in our laboratory, which exploit this correspondence, to study issues in
quantum chaos. The experiments utilize microwave cavities shaped in the
form of a Sinai billiard cavity. We discuss the experimental method
employed to determine the eigenvalues of such cavities, and also a novel
technique to obtain maps of the corresponding eigenfunctions (Section 2).
The experimental features, and advantages and limitations, are described.
The influence of absorption at the walls on the results is discussed (Section
3). We present some results for the eigenvalues (Section 4), and display
several of the low-lying eigenfunctions of the Sinai billiard cavity (Section
5). The principal result which emerges is the connection to classical
periodic orbits, and the direct observation of scars®* in the wave-
functions.

1. MICROWAVE CAVITIES

An ideal microwave cavity is a singly or multiply connected 3-dimen-
sional domain 2 bounded by infinitely conducting walls (later we examine
the effects of finite conductivity). In this domain, stationary solutions of
electromagnetic waves obey the wave equation

(V2 + w*/c?){E, B} =0 (1)

with boundary conditions requiring that E normal to £ and B tangential
to @ vanish.

If the cavity is cylindrical, i.e., is uniform in the z direction, but has
arbitrary cross section, then the fields can be expressed as

E{B} =E{B}(x, y)exp(ik,z — iwt) (2)
Substituting, we get
[V:+(k*—k2)]{E, B} =0 3)

where V2 =V?—5%/6z% and k = w/c.

The fields can be expressed in terms of transverse (¢) and axial (z)
components, viz. E{B} =E_{B.} + E,{B,}. It is then possible to show that
the transverse components E, and B, can be calculated in terms of the z
components E, and B, only:

E{B,) =k2ik§ [v, (aEza{fz}) +{- }ikz‘xV,Bz{Ez}] )
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If the cavity has a thickness & along the z direction, then the boundary
conditions require that &k, = pn/d. Equation (3) can then be written as

[V?+ (k*~(pn/d)*1{E., B.} =0 (5)

Two classes of modes are possible:

TE (Transverse Electric) Modes: E, =0 everywhere.

Since B, must vanish at z=0 and 4, the only solutions allowed are of
the form B, = B_(x, y) sin(pnz/d), which requires that p # 0. Thus, all the
TE modes must have a variation along z, and hence can never be treated
as 2-dimensional. We ignore these modes in the subsequent discussion.

TM (Transverse Magnetic) Modes: B, =0 everywhere.

From Eq. (4) the allowed solutions are E,= E (x, y)cos(pnz/d), so
that £, is nonzero at z=0 and z =4. Here p =0 is allowed and hence there
is a class of TM modes which have no variation along the z direction, and
hence are 2-dimensional. We confine our subsequent discussion to these
modes only. Below we summarize the properties of these states:

2-Dimensional Transverse Magnetic Modes (p = 0):

[VZ+k*]E,=0 (6)
E.=E.(x,y) (7)
B, = (iw/cy*)¢ xV,E, (8)
B.=0, E,=0 everywhere {(9)

it is useful to recall the solutions for the case of a rectangle of dimen-
sions a x b. Here the eigenvalues are given by o* = ¢*[(nn/a)* + (mn/b)*],
and the eigenfunctions by

E,= E sin(nnx/a) sin(mny/b)
B, o« sin{nnx/a) cos(mmny/b)
B, o cos(nnx/a) sin(mny/b)

In general, for arbitrary cross section, all modes which have an eigen-
frequency w <cn/d are guaranteed to be 2-dimensional. The number of
modes which satisfy this criterion will be determined by the relative values
of d and the (x, y) dimensions. This is important from an experimental
point of view, since then these modes are easy to identify as being all the
ones below a maximum frequency. Of course 2D modes will occur at all
frequencies, but will be interspersed among p # 0 modes.

For completeness, we state the correspondence between the EM and
the QM situations. For the eigenvalues, k%= w?/c? < E=#*%?*/2m. The
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classical limit of the QM problem is obtained when the de Broglie
wavelength 1= #/k < dimensions of &. This is equivalent to the geometrical
optics or ray limit of the EM problem, where the wavelength.
A= c/f < dimensions of Z.

2. EXPERIMENTAL TECHNIQUES

For the closed systems studied in this work, the principal quantities of
interest are the eigenvalues and the eigenfunctions of the bound states. This
section discusses the experimental observation of these quantities.

The geometries studied in this work were a Sinai billiard consisting of
a rectangle with a circular disc inside, and a bare rectangle [Fig. 1 (top)].
The cavities consist of top and bottom plates, and side bars of thickness
6 mm all tightly bolted together. The circular disc, also of thickness 6 mm,
could be placed anywhere in the rectangular enclosure. All material was
made of OFHC copper polished to a high finish.

2.1. Measuring Eigenvalue Resonances

Microwaves were coupled into and out of a cavity via coax probes
terminated by loops connected to the center and outer conductors of
the coax. The coupling ports of diameter .085 in. through which the coax
were inserted were located on the side bars at half the cavity height [Fig. 1

Bare Rectangle Sinai Billiard

21.9 cm ’ I 10.0 cm

44.0 cm

Step Motor

HP8510B [BM PC
‘ Network Analyzer

Fig. 1. (Top) The two cavity geometries studied: a rectangle and a Sinai billiard. (Bottom)
Schematic diagram of the experimental setup showing the Sinai billiard cavity, the mechanism
for positioning the perturbing ball, and the microwave analyzer.
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(bottom)]. This method couples dominantly to the transverse B fields on
the sides. It is important to note that the coupling could be varied by
orders of magnitude by inserting or withdrawing the coax, and also by
orienting the loop. All the measurements reported here were carried out
using the weakest coupling allowable. The experimental technique is similar
to those used extensively'® in this laboratory to study both normal (Cu)
cavities and superconducting (high 7,, Nb and Pb) cavities, with O’s
ranging from 10° to 10°.

The cavities were studied in a transmission mode [Fig. 1 (bottom}],
using an HP8510B Network Analyzer (ANA), driven by a HP8431B
synthesizer capable of providing signals between 45 MHz and 20 GHz. The
ANA enables one to study the transmission function 5,,(f) of the cavities
over any chosen bandwidth at f <20 GHz. Although both amplitude and
phase are measurable, only the amplitude is important here.

A typical transmission trace S,,(f) vs. frequency f = w/2n between 3.1
and 3.5GHz is shown in Fig. 2 for the Sinai billiard cavity. Several
resonance peaks are clearly identifiable. As expected, the transmission
function for each resonance appears to be Lorentzian. However, the trace
also illustrates a limitation of the experiment. Because of the finite width,
very closely spaced resonances may overlap. By substantial frequency
magnification, it is possible to distinguish between overlapping resonances
—sometimes they appear as shoulders on larger peaks, or as distinct but
overlapping peaks. With care, and some judgment, it is possible to identify
all eigenfrequencies except those which overlap within about 1/10 of the
resonance width. Thus, slightly broken degeneracies and accidental near
degeneracies may be missed.

Transmission Amplitude
-—
—

3.1 3.2 33 34 3.5
Frequency (GHz)

Fig. 2. Typical transmission amplitude vs. frequency plot showing several resonance peaks
(eigenfrequencies) for the Sinai billiard.
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The finite width of the resonances is due to absorption in the walls.
We discuss the role of absorption and the influence of overlapping
resonances on the spacing statistics in appropriate sections later.

It is well known that in this method of measuring cavity properties,
each cavity eigenmode can be regarded as a driven, damped, harmonic
oscillator. The coupling mechanism, which acts as a weak perturbation,
can modify the cavity properties in two ways: frequency-pulling, i.e., shift
of resonance frequency, and loading, i.c., reduction of Q. However, the
actual parameter values used were such that both these effects of the
coupling were negligible in comparison to the major contributions to non-
ideality, viz. absorption in the walls and slight geometric imperfections of
the cavity. Thus, the means of observation of the cavity were the weakest
perturbations in our experiments.

2.2. Mapping Eigenfunctions

While the eigenfrequencies are easily observed, obtaining a full 2D
mapping of the eigenfunctions poses special challenges. A natural method
may appear to be to have another coupling port in the top or bottom
plates and to insert a measuring probe. If the port + probe could be moved,
then in principle one could measure the field amplitudes at various posi-
tions. This obvious method was not attempted, as it is quite cumbersome.

Instead we use a technique that utilizes a cavity perturbation method,
in which the frequency shift caused by a metallic object placed inside the
cavity is a measure of the local field at the object location. For a metallic
object, the frequency shift of the resonance from its unperturbed value f, is
given by®

2 2
gz _j(ocE — pB*Ydv, (10
fo U

where o and f are geometric factors determined by the shape, the integra-
tion is over the sample (bead) volume, and U is the energy density in the
cavity. For a very small, needlelike bead with the long axis parallel to the
E field, the above equation can be written as

df(x, y)= —kEXx,y) or  EXx,y)=—Af(x,y)k (11)

where k is a geometric factor independent of position. Thus EZ(x, y) can
be measured, to within a scale factor, by moving a metallic bead over the
cross section of the cavity.
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2.2.1. 1D Wavefunction Slices. In our initial experiments, we
employed a metallic bead attached to a nylon fishing line. By pulling the
line using a stepper motor and measuring the resonance peak of a par-
ticular eigenmode transmission resonance as the bead was stepped from
one end to another using about 200 steps, we were able to obtain a 1D
slice of the wavefunction. The result for the 10.78-GHz mode of the rec-
tangular cavity is shown in Fig. 3 (top), along with the direction of the
bead motion, which is displayed in the inset. The periodic nature is
apparent, and the data follow the expected sine-squared behavior.

Similar results for the 16.27-GHz mode of the Sinai billiard cavity are
shown in Fig. 3 (bottom). The aperiodic nature of the wavefunction is
clearly obvious, and was (for us at least) the first evidence of unusual
wavefunctions in the billiard cavity, and provided encouraging results for
further studies.

The above method is often used in studying accelerator structures.
However, a little reflection shows that 1D slices are clearly inadequate, and
results depend crucially on the particular slice chosen. Thus, a 2D method
was necessary. This was particularly challenging, since, to our knowledge,
wavefunctions had not been measured in more than one dimension.

2.2.2. Measuring Wavefunctions in 2D. A 2D implementation
of the cavity perturbation technique was carried out by employing a steel
magnetic bead which could be “dragged” along the top surface of the cavity

AAW

W\W\w O

Fig. 3. Experimentally measured one-dimensional “slice” of E2 for (top) the 10.78-GHz
mode of the rectangular cavity, and (bottom) the 16.27-GHz mode of the Sinai billiard cavity.
The trajectory of the “slice” for each case is shown on the right.
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by external magnetic means. Typically the bead is moved to locations on
a grid and the resonance frequency is measured for each grid location.
Taking the unshifted resonance frequency to be when the bead is at a
corner, the frequency shifts for each grid location are obtained. These
frequency shifts then yield E2 by using Eq. (11). The data are typically con-
verted to contour plots, although we have also found other representations,
such as density plots, to be also informative. This is repeated for each
resonance, and thus the eigenfunction corresponding to each eigenvalue is
then obtained. The speed of acquiring the wavefunctions is primarily
limited by the mechanical motion and by the need to noise-average trans-
mission traces for small resonance peaks. For low frequencies and coarse
grids (~0.5-1 cm) typical wavefunction acquisition time is about 20 min.

Several precautions are needed in order to acquire accurate data.
Adequate resolution is easily ensured by using appropriately small grid step
sizes, which need to be less than /10 to A/5, where 4 = ¢/f is the free-space
wavelength. It is most important to ensure that the perturbation due to the
bead does not itself affect the measurement. This perturbation would
principally lead to a mixing of states, particularly neighboring ones. This is
prevented by choosing an appropriately small bead, using a rule of thumb
that the maximum frequency shift is much smaller, say 1/5 of the resonance
width. This also ensures that the maximum frequency shift is very smalil
compared to the nearest neighbor spacing for well-separated resonances.
The problem arises for resonances which are not well separated, par-
ticularly for ones that appear as shoulders of larger resonances. Occa-
sionally these wavefunctions cannot be measured. Finally, since the bead
perturbation represented by the geometric factor k in Eq. (11) increases
linearly with f and bead volume V,, smaller beads are required for higher
frequencies. With these precautions, it is possible to observe reliably the
eigenfunctions for all but a small fraction of the observed eigenvalues, as
the subsequent discussion in Section 5 shows.

While the major perturbation caused by the bead is due to the F field,
there is a small contribution due to the B field for the spherical metallic
object used here. This is evident from the observation of a small, positive
frequency shift where the E field is known to be zero. Thus, a more exact
representation of the bead perturbation is Af= —kzE2+kzB?. In
practice, the B-field contribution is small (estimated to be about a few
percent), and is eliminated by ignoring all positive frequency shifts.

3. EFFECTS OF FINITE ABSORPTION (i.e., Q)

A fundamental premise of the relation of the experimental work to
theoretical considerations is that the influence of absorption, which is
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always present in an experiment, is minimal and even ignorable. Here we
examine this premise and consider the specific effects of absorption.

Absorption arises in real cavities due to the presence of walls which
have a finite conductivity, or equivalently a finite skin depth. This has two
direct consequences: (1) a small shift of the resonance frequency, and (2)
a broadening of each resonance.

The resonance frequency shift can be understood as if the dimensions
of the cavity were extended by one skin depth. This is because in a real
metal, the tangential E and normal B fields do not terminate at the physi-
cal boundary, but extend approximately one skin depth into the metal. For
Cu at room temperature, the skin depth varies as 5Cu:2.075/\/_7 (pm),
where fis in GHz. Thus, the skin depth varies from about 2 ym to 0.5 ym
between 1 and 20 GHz The corresponding resonance frequency shifts
can be estimated as Afy/fo~dc./a, where a [~O(10°cm)] is the
(approximate) linear dimension in the xy plane. Thus, the shift of the
resonances from their ideal location f, due to absorption is about 10/,
ie, about 100kHz in the frequency range of measurement. This is
negligible, since the accuracy of the dimensions is about 10~* at best.

On the other hand, the broadening of the resonances has important
consequences, principally leading to eigenvalues which may be missed due
to overlapping neighboring resonances (see Section 4). In order to under-
stand this quantitatively, it is useful to use the notion of the Q of the cavity,
which is defined in terms of the resonance half-width as Q= f,/df, and
which is typically 10*. Consider the TM modes of a rectangular cavity of
dimensions a x b x d. Then

Ot 4o ey O, md(m’b> + n’a’) ab
Fomo  ab(m?b? + n2a®) + 2d(n’a® + m*b°)

(12)

where m, n define the mode. If d<a, b as is the case here, then
O~ (HoOcuOcymd) f o \/;‘, since ¢, o€ 1/\/;’. Thus, the resonance width
of «c \/ f, 1.e., the resonance width, and hence the problem of overlapping
resonances, increases with frequency.

For a general cavity, including the Sinai billiard, the Q of a mode can
always be expressed as Q = I/R,, where R, is the surface resistance (oc \/7
for a normal metal), and I is a geometric factor and is mode specific. At
high frequency, [ oc f. Thus, in all cavities made of normal metal,
Q o« \/? (This has been shown experimentally,® and also that for super-
conducting cavities Q oc 1/f, since R, oc f2. The use of superconducting
cavities would remove the present limitations due to absorption, since the
Q’s would be at least 10°-10* times higher due to very low R,.)

In practice it is possible to distinguish resonances which are spaced
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greater than about 1/10 of the resonance width. The principal consequence
of missing eigenvalues is in the spacing statistics, as discussed later.

The finite absorption does not affect the eigenfunctions of well-spaced
resonances, as is apparent from later sections. However, the resonance
width does lead to mixed states, and limits the observation of pure states
when neighboring resonances overlap.

4. RESULTS FOR THE EIGENVALUES

Using the procedure outlined in Section 2, we have determined all the
eigenfrequencies which could be definitely identified below 20 GHz. For
the bare rectangle, about 820 eigenfrequencies were obtained, while for
the Sinai billiard, about 780 were obtained. We discuss below some
preliminary results of analysis of these data.

One of the important theoretical results in quantum chaos has been
the recognition of different universality classes for the eigenvalue spacing
statistics in regular and chaotic systems. In Figs. 4 (top) and 4 (bottom) we

Rectangular Cavity
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=y

Distribution
g

50

OO 05 1 15 2253354455
Normalized Spacing

Sinai Cavity

wl]

100 |

Distribution

50

o
005 1 152253354 455
Normalized Spacing

Fig. 4. Raw spacing statistics for (top) the rectangular cavity, and (bottom) the Sinai billiard
cavity.
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plot the raw spacing statistics of the eigenvalues of the rectangle and Sinai
billiard in terms of the number of eigenvalues vs. the normalized spacing of
the observed levels. (A much more detailed study of the spacing statistics
obtained by unfolding the spectrum will be presented elsewhere. Here we
only discuss the important features and the advantages and limitations of
the experimental method.) The normalized spacing was simply obtained
from the actual nearest neighbor spacing by normalizing to the mean
spacing calculated from all the observed levels.

The most obvious feature of the data in Fig. 4 is the similarity between
the spacing statistics of both the integrable (rectangular) cavity and the
chaotic (Sinai billiard) cavity. This, of course, is not what is expected on
theoretical grounds, since the rectangle should obey Poisson statistics,
P(s) oc exp(—ys), and the Sinai billiard should obey GOE or Wigner
statistics, P(s) oc s exp(—mns?/4). Although the Sinai billiard spacing
statistics appears to be Wigner-like, so does the spacing statistics for the
rectangle! The obvious discrepancy is in the rectangle case, where the data
do not continue to increase as s — 0. We believe that the reason for this is
that closely spaced resonances are missed due to the resonance width
caused by the absorption. This is most severe when s —0, and hence
suppresses the expected Poisson behavior in the case of the rectangle. The
particular aspect ratio of nearly 2:1 for the rectangle leads to many
degenerate levels, which of course would not be measured in the experi-
ment. We are currently carrying out a more detailed study of the spacing
statistics, and a much more comprehensive analysis of both P(s}) and other
statistical measures will be published elsewhere.

5. RESULTS FOR THE EIGENFUNCTIONS

The cavity experiments here are particularly powerful® for studying
eigenfunctions, as the following discussion shows.

5.1. Rectangular (Integrable) Cavity

We first illustrate the results by displaying some eigenfunctions of the
bare rectangular cavity (Fig. 5). In this and all other plots, the positive
frequency shifts, associated with a B* term as discussed in Section 2, have
been subtracted from the data. The mode structure is clearly identifiable,
and the mode quantum numbers are easily obtainable. Thus, the two eigen-
functions shown in Fig. 5 have quantum numbers (2, 8) and (1, 13). The
eigenfrequencies can be directly calculated since the quantum numbers are
known, and are 3.053 and 4.482 GHz, which are in agreement with the
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Frequency: 3.053 GHz Frequency: 4.483 GHz

Fig. 5. Experimental contour plots of two wavefunctions of the rectangular cavity.

measured values 3.053 and 4.483 GHz to within 0.1 %. The wavefunction
clearly has the expected sin(nmx/a) sin’(mn/b) behavior. We have studied
many more eigenfunctions of the bare rectangle. In each case the results are
unambiguous, and exactly as expected.

The control experiments with the rectangle are important in providing
reassurance of the following points. Once the quantum numbers are iden-
tified, experiment and theory agree to better than 0.1 %. It is also clear that
the structure of the eigenfunctions is not affected by the absorption in the
walls or geometric imperfections. Last, but not the least, is the conclusion
that the measurement technique, ie., the perturbations introduced by the
coupling ports and the measuring bead, can be controlled so as to be
essentially ignorable. We conclude that the measurement method does not
introduce chaos into the integrable system.”

b.2. Sinai Billiard Cavity

The wavefunctions of the Sinai billiard cavity display a rich and
fascinating variety of patterns, as shown in Fig. 6, in contrast to the known
results for the integrable, rectangular cavity. Shown in Fig. 6 are 36 of
the lowest-lying eigenfunctions. We have carried out measurements of the
eigenfunctions up to at least 10 GHz, corresponding to level numbers of
several hundred. The displayed wavefunctions are illustrative of the features
that are observed at higher frequencies, although of course the latter are
more complex.

Not all of the lowest-lying eigenfunctions are displayed in Fig. 6. The
wavefunctions corresponding to resonances peaks observed at 1.571, 1.788,
1.801, 3.829, 4224, 4327, and 4.449 GHz were not measurable due to weak
coupling or strong overlap. Also, the particular geometry chosen has
accidental near-degeneracies of eigenstates that are either even or odd with
respect to reflections about the central vertical axis. These levels, although
distinct in principle, are split by amounts much less than the individual
resonance widths. For instance, the ground state, which is even—even,
should have a partner which is odd—even and which has a node along the
vertical axis.
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A striking difference between the wavefunctions presented for the
integrable rectangle system in Fig. 5 and the chaotic system in Fig. 6 is
that, in the case of the integrable system (Fig. 5), the quantum numbers
(ie., for k., and k,) associated with each eigenfunction are immediately
obtained. Furthermore, knowledge of the quantum numbers yields the
corresponding cigenvalue, using analytical formulas. In contrast, for the
chaotic billiard, these quantum numbers do not exist. This is evident from
the wavefunctions displayed in Fig. 6. Since there are no exact rules of
quantization, an exact connection between the eigenfunction and the
corresponding eigenvalue is not possible. This is of course one of the major
issues in quantum chaos. (In some limited cases such an approximate
connection is possible, as we discuss below.)

Lacking a quantitative theory of the wavefunctions of chaotic
geometries, one can only analyze the observed wavefunctions for general
trends. The influence of symmetries is evident from the displayed figures.
The other important guide that can be used is to consider the influence of
the semiclassical ray or particle dynamics on the wavefunctions.

One of the remarkable realizations that has been made recently is the
recognition of the importance of classical periodic orbits (PO) to the quan-
tum or wave mechanics. The discovery by Heller® that wavefunctions of
chaotic geometries can often be “scarred” along periodic orbits has played
a central role in analyzing wavefunctions. Some of the shorter PO of the
Sinai billiard are shown in Fig. 7. In the case of the Sinai billiard, the PO
can be divided into two major types: those which avoid the central disc and
only hit the rectangle, and those which also hit the disc. The former are
nonisolated, since there exist nearby trajectories which have the same
character. In contrast, PO which hit the central disc are unstable and
isolated, since nearby trajectories are not periodic. Both these types of PO
are seen to play a role in the wavefunctions, as discussed below.

Fig. 7. Some of the periodic orbits of the Sinai billiard which are observed in the wave-
functions displayed in Fig. 6.
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5.2.1. Nonisolated PO. Wavefunctions which can be associated
with PO which only impinge on the outer rectangle are easily recognizable,
since they retain the character of the wavefunctions of the bare rectangle.
Besides the lowest four wavefunctions, a particularly striking example is the
4.028-GHz ecigenstate. Here the presence of the disc appears to be entirely
ignored. This is because it is possible to fit two more maxima into the
region occupied by the disc. Families of these “rectangular” states can be
seen, with another example being at 3.212 GHz. Another family of
“quasirectangular” states can be recognized, with members at 3.475 and
4.074 GHz. These states seem to be distortions of the rectangular wave-
functions due to the presence of the disc. The well-known “bouncing ball”
states are easily recognizable at 2.866 and 3.529 GHz. (It should be noted
that these bouncing ball states also appear to be scarred along the
diamond-shaped orbit d shown in Fig. 7.)

One aspect of these wavefunctions is worth noting. It is possible to
arrive at a reasonably good estimation of the eigenvalues corresponding to
the above eigenfunctions using the quantization rules for an appropriately
chosen rectangular area. For instance, one would use the bare rectangular
area for the “rectangular” states, and the left and right regions only for the
bouncing ball states. Examples of such estimations are given in ref. 4.

5.2.2. Scars Along lsolated or Unstable PO. The cavity
experiments discussed here have enabled the direct observation of
wavefunctions which are scarred along some of the unstable PO specific to
the Sinai billiard. Among the eigenfunctions displayed in Fig. 6, the PO
along which scars are observed and the corresponding eigenvalues (the
labels are from Fig. 7) are (d) 2.866 GHz, (e) 2.695 and 4.342 GHz, (f)
3.225 GHz, (g) 3.663 GHz, (h) 2.446 and 3.499 GHz, and (j) 2.913 GHz.
We also note that the scar associated with the PO labeled ¢ is observed in
the 3.112-GHz state. Although this PO is really nonisolated, its presence is
peculiar to the Sinai billiard.

The identification of scars and associated PO is unfortunately not
enough to permit an estimation of the corresponding eigenvalue. Simple
quantization along a single PO is inadequate, since the problem is
inherently 2D and cannot be reduced to 1D. It will also be noticed that a
given wavefunction may be scarred along more than a single PO. An
example is the 3.499-GHz state, which is scarred along the POs ¢ and h.
This is more evident at higher frequencies, where multiple scars may be
observed in a single wavefunction.

It is also apparent that there are many wavefunctions where scars can-
not be clearly identified. (For example, the states at 3.767 GHz appear to
reflect the circular symmetry of the central disc.) This may be due to the



Microwave Experiments on Chaotic Billiards 257

greater instability of the PO in the Sinai billiard, in contrast, say, to
the Bunimovich stadium, where apparently a substantial fraction of the
wavefunctions are scarred. However, this may also be due to the difficulty
of relying only on visual inspection to identify scars, which becomes
increasingly difficult when the PO involve multiple bounces, or when more
than one PO may be involved. Clearly a more quantitative approach is
needed which does not rely on visual identification alone, and which may
also enable a match to the corresponding eigenvalues. Some progress in
“quantizing chaos” has been made using trace formulas for the eigenvalues,
and it remains to be seen whether comparable success can be achieved for
the eigenfunctions.

6. CONCLUSIONS AND SUMMARY

The discussion presented in this paper describes the utility of
electromagnetic experiments studying wave or quantum chaos. Such
experiments provide a well-controlled means of addressing important issues
regarding the eigenvalues and eigenfunctions in closed geometries. The
experiments are particularly powerful in providing direct physical realiza-
tion of the wavefunctions, in contrast to other (atomic or nuclear)
phenomena, where the principal observables are usually the eigenvalues
and their statistics, while details of wavefunctions have indirect consequen-
ces® on phenomena such as scattering or ionization. The electromagnetic
experiments have provided the first direct observation® of scars proposed
earlier®® on theoretical grounds, and underscore the importance of classical
periodic orbits in the wave or quantum mechanics of classically chaotic
systems. The results obtained here can be easily scaled down to atomic
systems. For example, the Sinai billiard geometry studied here is relevant‘®)
to the helium atom.

Several other developments arising from such experiments are briefly
mentioned here, and are the subject of future work. A more complete
examination of the statistics of the eigenvalues and the wavefunctions is
presently underway. We have also carried out a comparison’?’ with
numerical simulations, and found excellent agreement both as regards the
eigenfunctions and the eigenvalue magnitudes. As noted earlier, the
association of wavefunctions with PO is at the moment based upon visual
suggestion, and is far from quantitative. It remains to be seen whether
quantitative rules can be devised, as have recently been proposed in terms
of trace formulas for the eigenvalues.!*!

The ability to easily vary parameters of the geometry and to study the
parameter dependence of the wave dynamics is one of the powerful features
of the experimental approach. For instance, the Sinai billiard is extremely
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sensitive to small changes in the geometry, and such changes can be easily
studied.® We have found that small changes in the disc location can lead
to the phenomenon of quantum localization,*!'” in which the waves are
localized, even though the classical trajectories access all of the available
space. In the experiment it is easy to vary the disc location. Some conse-
quences of placing the disc in one corner have been presented earlier, and
a more complete study is ongoing.

Electromagnetic experiments of the type discussed here can also be
used to study chaotic scattering in open geometries, as recent work has
shown."? Extensions to 3D and the study of wave-packet dynamics are
also feasible, although it must be noted that then the Maxwell and
Schrodinger descriptions would be different.

The present situation in quantum chaos is reminiscent of an analogous
period in classical particle chaos, before the discovery of general rules
such as, for example, period-doubling bifurcations. There, too, analog
experiments played an important role in elucidating phenomena, and the
experiments discussed here may be viewed in a similar context.
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