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Microwave Experiments on Chaotic Billiards 
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We describe experiments using billiard-shaped microwave cavities, to test ideas 
in quantum chaos. The experimental method for observing cavity resonances to 
obtain the eigenvalues, and the advantages and limitations of the techniques, 
including the influence of absorption, are discussed. An experimental technique 
to obtain a 2D mapping of the wavefunction is described. Results are displayed 
for 36 of the low-lying wavefunctions of a Sinai billiard cavity consisting of a 
central disc in a rectangular enclosure. The wavefunctions demonstrate the 
influence of classical periodic orbits (PO), of which there are two types: non- 
isolated PO, which avoid the central disc, and isolated PO, which hit the central 
disc. Scarred states, including those associated with isolated PO, are directly 
observed. 

KEY WORDS:  Quantum chaos; microwave cavities; sinai billiard; eigen- 
functions; eigenvalues; scarred states; periodic orbits. 

Whi le  significant progress  has been achieved on theoret ica l  aspects  (1) of the 
q u a n t u m  or  wave mechanics  of classically chaot ic  systems, exper imenta l  
work  has ga thered  m o m e n t u m  only recent lyJ  2) This is because the p r o p e r  
exper imenta l  systems, and  the observab le  s ignatures  of  q u a n t u m  chaos  in 
pa r t i cu la r  exper iments ,  need to be identified. Whi le  p h e n o m e n a  at  the 
a tomic  or  suba tomic  level are obvious  exper imenta l  candida tes ,  the com- 
m o n  wave na ture  of  e lec t romagnet ics  and  q u a n t u m  mechanics  suggests a 
new a p p r o a c h  to exper iments  designed to test observable  consequences  of  
the wave aspects  of  classical chaos.  

The cor respondence  between q u a n t u m  mechanica l  p rob lems  and 
e lec t romagnet ic  s i tua t ions  has  long been recognized.  In  two dimensions ,  
and  for s t a t ionary  t ime- independen t  s i tuat ions ,  bo th  the Maxwel l  and  
the Schr6dinger  equa t ions  reduce to the scalar  He lmhol t z  equa t ion :  
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(V 2 +k2){Ez or ~p} =0. For bound states in closed systems and scattering 
states in open systems, the correspondence can be exploited to yield 
information on both electromagnetic and quantum mechanical situations. 

This paper discusses the basis and results of recent experiments carried 
out in our laboratory, which exploit this correspondence, to study issues in 
quantum chaos. The experiments utilize microwave cavities shaped in the 
form of a Sinai billiard cavity. We discuss the experimental method 
employed to determine the eigenvalues of such cavities, and also a novel 
technique to obtain maps of the corresponding eigenfunctions (Section 2). 
The experimental features, and advantages and limitations, are described. 
The influence of absorption at the walls on the results is discussed (Section 
3). We present some results for the eigenvalues (Section 4), and display 
several of the low-lying eigenfunctions of the Sinai billiard cavity (Section 
5). The principal result which emerges is the connection to classical 
periodic orbits, and the direct observation of scars (3'4) in the wave- 
functions. 

1. M I C R O W A V E  C A V I T I E S  

An ideal microwave cavity is a singly or multiply connected 3-dimen- 
sional domain ~ bounded by infinitely conducting walls (later we examine 
the effects of finite conductivity). In this domain, stationary solutions of 
electromagnetic waves obey the wave equation 

(v  2 + B} = o (1) 

with boundary conditions requiring that E normal to ~ and B tangential 
to ~ vanish. 

If the cavity is cylindrical, i.e., is uniform in the z direction, but has 
arbitrary cross section, then the fields can be expressed as 

E{B} = E{B}(x, y) exp(ikzz - io)t) (2) 

Substituting, we get 

+ k )3 {E, B} = 0 (3) 

2 where V t = V 2 - -  ~2/~Z2 and k =- e)/c. 
The fields can be expressed in terms of transverse (t) and axial (z) 

components, viz. E{B} = Ez{Bz} + E,{Bt}. It is then possible to show that 
the transverse components E, and B, can be calculated in terms of the z 
components Ez and Bz only: 

E ' { B t } = k 2 - k z  \ -~z ] + { -  }ik~ 
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if the cavity has a thickness d along the z direction, then the boundary 
conditions require that k~ =pz~/d. Equation (3) can then be written as 

W + (k 2 - ] {Ez, Bz} = 0 (S) 

Two classes of modes are possible: 
TE (Transverse Electric) Modes: Ez = 0 everywhere. 
Since Bz must vanish at z = 0 and d, the only solutions allowed are of 

the form B z = Bz(x, y)sin(pztz/d), which requires that p #0 .  Thus, all the 
TE modes must have a variation along z, and hence can never be treated 
as 2-dimensional. We ignore these modes in the subsequent discussion. 

TM (Transverse Magnetic) Modes: B z = 0 everywhere. 
From Eq. (4) the allowed solutions are E z =  Ez(x, y)cos(p~z/d), so 

that Ez is nonzero at z = 0 and z = d. Here p = 0 is allowed and hence there 
is a class of TM modes which have no variation along the z direction, and 
hence are 2-dimensional. We confine our subsequent discussion to these 
modes only. Below we summarize the properties of these states: 

2-Dimensional Transverse Magnetic Modes (p = 0): 

[V, 2 + k 2 ] E~ = 0 (6) 

E z = Ez(x, y) (7) 

B, = (i{o/c~2)2 x V,E~ (8) 

Bz = 0, E, = 0 everywhere (9) 

It is useful to recall the solutions for the case of a rectangle of dimen- 
sions a x b. Here the eigenvalues are given by co2= c2[(nz/a)2+ (mTr/b)2], 
and the eigenfunctions by 

Ez = Eo sin(n~x/a) sin(m~y/b ) 

Bx vc sin(nTrx/a) cos(mgy/b ) 

By oc cos(nrcx/a) sin(m'ay/b ) 

In general, for arbitrary cross section, all modes which have an eigen- 
frequency 09 < cn/d are guaranteed to be 2-dimensional. The number of 
modes which satisfy this criterion will be determined by the relative values 
of d and the (x, y) dimensions. This is important  from an experimental 
point of view, since then these modes are easy to identify as being all the 
ones below a maximum frequency. Of course 2D modes will occur at all 
frequencies, but will be interspersed among p :~ 0 modes. 

For  completeness, we state the correspondence between the EM and 
the Q M  situations. For  the eigenvalues, kZ=ooZ/c2,~E=h2k2/2m. The 

822/68/1-2-16 
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classical limit of the QM problem is obtained when the de Broglie 
wavelength 2 = h/k ~ dimensions of 9 .  This is equivalent to the geometrical 
optics or ray limit of the EM problem, where the wavelength 
.~ = c / f  ~ dimensions of 9 .  

2. EXPERIMENTAL TECHNIQUES 

For the closed systems studied in this work, the principal quantities of 
interest are the eigenvalues and the eigenfunctions of the bound states. This 
section discusses the experimental observation of these quantities. 

The geometries studied in this work were a Sinai billiard consisting of 
a rectangle with a circular disc inside, and a bare rectangle [Fig. 1 (top)].  
The cavities consist of top and bottom plates, and side bars of thickness 
6 mm all tightly bolted together. The circular disc, also of thickness 6 mm, 
could be placed anywhere in the rectangular enclosure. All material was 
made of O F H C  copper polished to a high finish. 

2.1. Measuring Eigenvalue Resonances 

Microwaves were coupled into and out of a cavity via coax probes 
terminated by loops connected to the center and outer conductors of 
the coax. The coupling ports of diameter .085 in. through which the coax 
were inserted were located on the side bars at half the cavity height [Fig. 1 

21.9 cm 

Bare Rectangle 

44.0 cm 

Sinai Billiard 

I lO.O cm 

Step Motor 

Probe 

Step Motor 

w 

HP8510B 
Network Analyzer 

IBM PC 

Fig. 1. (Top) The two cavity geometries studied: a rectangle and a Sinai billiard. (Bottom) 
Schematic diagram of the experimental setup showing the Sinai billiard cavity, the mechanism 
for positioning the perturbing ball, and the microwave analyzer. 
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(bottom)]. This method couples dominantly to the transverse B fieIds on 
the sides. It is important to note that the coupling could be varied by 
orders of magnitude by inserting or withdrawing the coax, and also by 
orienting the loop. All the measurements reported here were carried out 
using the weakest coupling allowable. The experimental technique is similar 
to those used extensively r in this laboratory to study both normal (Cu) 
cavities and superconducting (high To, Nb and Pb) cavities, with Q's 
ranging from 103 to 109 . 

The cavities were studied in a transmission mode [Fig. 1 (bottom)], 
using an HP8510B Network Analyzer (ANA), driven by a HP8431B 
synthesizer capable of providing signals between 45 MHz and 20 GHz. The 
ANA enables one to study the transmission function $21(f) of the cavities 
over any chosen bandwidth at f < 20 GHz. Although both amplitude and 
phase are measurable, only the amplitude is important here. 

A typical transmission trace S 2 1 ( f )  vs. frequency f =  ~0/2z between 3.1 
and 3.5 GHz is shown in Fig. 2 for the Sinai billiard cavity. Several 
resonance peaks are clearly identifiable. As expected, the transmission 
function for each resonance appears to be Lorentzian. However, the trace 
also illustrates a limitation of the experiment. Because of the finite width, 
very closely spaced resonances may overlap. By substantial frequency 
magnification, it is possible to distinguish between overlapping resonances 
--sometimes they appear as shoulders on larger peaks, or as distinct but 
overlapping peaks. With care, and some judgment, it is possible to identify 
all eigenfrequencies except those which overlap within about 1/10 of the 
resonance width. Thus, slightly broken degeneracies and accidental near 
degeneracies may be missed. 

-(21 

o _  

E <1: 
c- 
O 

E 

3.1 3.2 3,3 3.4 

Frequency (OHz) 
3.5 

Fig. 2. Typical transmission amplitude vs. frequency plot showing several resonance peaks 
(eigenfrequencies) for the Sinai billiard. 
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The finite width of the resonances is due to absorption in the walls. 
We discuss the role of absorption and the influence of overlapping 
resonances on the spacing statistics in appropriate sections later. 

It is well known that in this method of measuring cavity properties, 
each cavity eigenmode can be regarded as a driven, damped, harmonic 
oscillator. The coupling mechanism, which acts as a weak perturbation, 
can modify the cavity properties in two ways: frequency-pulling, i.e., shift 
of resonance frequency, and loading, i.e., reduction of Q. However, the 
actual parameter values used were such that both these effects of the 
coupling were negligible in comparison to the major contributions to non- 
ideality, viz. absorption in the walls and slight geometric imperfections of 
the cavity. Thus, the means of observation of the cavity were the weakest 
perturbations in our experiments. 

2.2. Mapping Eigenfunctions 

While the eigenfrequencies are easily observed, obtaining a full 2D 
mapping of the eigenfunctions poses special challenges. A natural method 
may appear to be to have another coupling port in the top or bottom 
plates and to insert a measuring probe. If the port + probe could be moved, 
then in principle one could measure the field amplitudes at various posi- 
tions. This obvious method was not attempted, as it is quite cumbersome. 

Instead we use a technique that utilizes a cavity perturbation method, 
in which the frequency shift caused by a metallic object placed inside the 
cavity is a measure of the local field at the object location. For a metallic 
object, the frequency shift of the resonance from its unperturbed value f0 is 
given by (6) 

2 -  dVb (10) 
fo u 

where :~ and fl are geometric factors determined by the shape, the integra- 
tion is over the sample (bead) volume, and U is the energy density in the 
cavity. For a very small, needlelike bead with the long axis parallel to the 
E field, the above equation can be written as 

Jf(x, y)= -kE (x, y) or E (x, y )=  -Jf(x,  y)/k (11) 

where k is a geometric factor independent of position. Thus E~(x, y) can 
be measured, to within a scale factor, by moving a metallic bead over the 
cross section of the cavity. 
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2.2.1. 1D Wavefunction Slices. In our initial experiments, we 
employed a metallic bead attached to a nylon fishing line. By pulling the 
line using a stepper motor and measuring the resonance peak of a par- 
ticular eigenmode transmission resonance as the bead was stepped from 
one end to another using about 200 steps, we were able to obtain a 1D 
slice of the wavefunction. The result for the 10.78-GHz mode of the rec- 
tangular cavity is shown in Fig. 3 (top), along with the direction of the 
bead motion, which is displayed in the inset. The periodic nature is 
apparent, and the data follow the expected sine-squared behavior. 

Similar results for the 16.27-GHz mode of the Sinai billiard cavity are 
shown in Fig. 3 (bottom). The aperiodic nature of the wavefunction is 
clearly obvious, and was (for us at least) the first evidence of unusual 
wavefunctions in the billiard cavity, and provided encouraging results for 
further studies. 

The above method is often used in studying accelerator structures. 
However, a little reflection shows that 1D slices are clearly inadequate, and 
results depend crucially on the particular slice chosen. Thus, a 2D method 
was necessary. This was particularly challenging, since, to our knowledge, 
wavefunctions had not been measured in more than one dimension. 

2.2.2. Measuring Wavefunct ions  in 2D. A 2D implementation 
of the cavity perturbation technique was carried out by employing a steel 
magnetic bead which could be "dragged" along the top surface of the cavity 

J 

V o 

Fig. 3. Experimentally measured one-dimensional "slice" of E~ for (top) the 10.78-GHz 
mode of the rectangular cavity, and (bottom) the 16.27-GHz mode of the Sinai billiard cavity. 
The trajectory of the "slice" for each case is shown on the right. 
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by external magnetic means. Typically the bead is moved to locations on 
a grid and the resonance frequency is measured for each grid location. 
Taking the unshifted resonance frequency to be when the bead is at a 
corner, the frequency shifts for each grid location are obtained. These 
frequency shifts then yield E ~ by using Eq. (11). The data are typically con- 
verted to contour plots, although we have also found other representations, 
such as density plots, to be also informative. This is repeated for each 
resonance, and thus the eigenfunction corresponding to each eigenvalue is 
then obtained. The speed of acquiring the wavefunctions is primarily 
limited by the mechanical motion and by the need to noise-average trans- 
mission traces for small resonance peaks. For low frequencies and coarse 
grids (~0.5-1 cm) typical wavefunction acquisition time is about 20 min. 

Several precautions are needed in order to acquire accurate data. 
Adequate resolution is easily ensured by using appropriately small grid step 
sizes, which need to be less than 2/10 to 2/5, where 2 = c/fis the free-space 
wavelength. It is most important to ensure that the perturbation due to the 
bead does not itself affect the measurement. This perturbation would 
principally lead to a mixing of states, particularly neighboring ones. This is 
prevented by choosing an appropriately small bead, using a rule of thumb 
that the maximum frequency shift is much smaller, say 1/5 of the resonance 
width. This also ensures that the maximum frequency shift is very small 
compared to the nearest neighbor spacing for well-separated resonances. 
The problem arises for resonances which are not well separated, par- 
ticularly for ones that appear as shoulders of larger resonances. Occa- 
sionally these wavefunctions cannot be measured. Finally, since the bead 
perturbation represented by the geometric factor k in Eq. (11) increases 
linearly with f and bead volume Vb, smaller beads are required for higher 
frequencies. With these precautions, it is possible to observe reliably the 
eigenfunctions for all but a small fraction of the observed eigenvalues, as 
the subsequent discussion in Section 5 shows. 

While the major perturbation caused by the bead is due to the E field, 
there is a small contribution due to the B field for the spherical metallic 
object used here. This is evident from the observation of a small, positive 
frequency shift where the E field is known to be zero. Thus, a more exact 
representation of the bead perturbation is A f = - k E E ~ + k s B  ~. In 
practice, the B-field contribution is small (estimated to be about a few 
percent), and is eliminated by ignoring all positive frequency shifts. 

3. EFFECTS OF FINITE ABSORPTION (i.e., Q) 

A fundamental premise of the relation of the experimental work to 
theoretical considerations is that the influence of absorption, which is 
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always present in an experiment, is minimal and even ignorable. Here we 
examine this premise and consider the specific effects of absorption. 

Absorption arises in real cavities due to the presence of walls which 
have a finite conductivity, or equivalently a finite skin depth. This has two 
direct consequences: (1) a small shift of the resonance frequency, and (2) 
a broadening of each resonance. 

The resonance frequency shift can be understood as if the dimensions 
of the cavity were extended by one skin depth. This is because in a real 
metal, the tangential E and normal B fields do not terminate at the physi- 
cal boundary, but extend approximately one skin depth into the metal. For 
Cu at room temperature, the skin depth varies as 6cu =2.075/xf-f (#m), 
whe re f i s  in GHz. Thus, the skin depth varies from about 2 ktm to 0.5 #m 
between 1 and 20GHz. The corresponding resonance frequency shifts 
can be estimated as Afo/fo,,.,acu/a, where a [~O(102cm)]  is the 
(approximate) linear dimension in the xy plane. Thus, the shift of the 
resonances from their ideal location fo due to absorption is about 10-5fo, 
i.e., about 100kHz in the frequency range of measurement. This is 
negligible, since the accuracy of the dimensions is about 10 -4 at best. 

On the other hand, the broadening of the resonances has important 
consequences, principally leading to eigenvalues which may be missed due 
to overlapping neighboring resonances (see Section 4). In order to under- 
stand this quantitatively, it is useful to use the notion of the Q of the cavity, 
which is defined in terms of the resonance half-width as Q = f  olaf, and 
which is typically 10 4. Consider the TM modes of a rectangular cavity of 
dimensions a x b x d. Then 

Q'rM laaCuaCu~Zd(m2b 2 + n2a 2) ab 
fmnO -- ab( m262 + n2a2) + 2d( n2a3 + m263) 

(12) 

where m, n define the mode. If d ~ a , b  as is the case here, then 
Q "~ (,Uoao~60,rcd)f oc x/-f, since 6cu oc l /x / ) .  Thus, the resonance width 
6f oc .~-f, i.e., the resonance width, and hence the problem of overlapping 
resonances, increases with frequency. 

For a general cavity, including the Sinai billiard, the Q of a mode can 
always be expressed as Q = FIRs, where R, is the surface resistance (oc 
for a normal metal), and F is a geometric factor and is mode specific. At 
high frequency, F oc f .  Thus, in all cavities made of normal metal, 
Q oc x/-). (This has been shown experimentally, (s~ and also that for super- 
conducting cavities Q oc 1/f, since R, oc f2. The use of superconducting 
cavities would remove the present limitations due to absorption, since the 
Q's would be at least 103-104 times higher due to very low Rs.) 

In practice it is possible to distinguish resonances which are spaced 
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greater than about 1/10 of the resonance width. The principal consequence 
of missing eigenvalues is in the spacing statistics, as discussed later. 

The finite absorption does not affect the eigenfunctions of well-spaced 
resonances, as is apparent from later sections. However, the resonance 
width does lead to mixed states, and limits the observation of pure states 
when neighboring resonances overlap. 

4. RESULTS FOR THE EIGENVALUES 

Using the procedure outlined in Section 2, we have determined all the 
eigenfrequencies which could be definitely identified below 20 GHz. For 
the bare rectangle, about 820 eigenfrequencies were obtained, while for 
the Sinai billiard, about 780 were obtained. We discuss below some 
preliminary results of analysis of these data. 

One of the important theoretical results in quantum chaos has been 
the recognition of different universality classes for the eigenvalue spacing 
statistics in regular and chaotic systems. In Figs. 4 (top) and 4 (bottom) we 

Recfangular  Cavi ty  
2oo 

150 
g 
"5 
I00 

50 

0 
0 0.5 1.5 2 2.5 3 3.5 4 4.5 

Normalized Spacing 

2oo Sinai Cavity 

150 

"5 
�9 ~ IOO 
cl  

50 
L ~  

[1.5 1.5 2 2.5 3 3.5 4 4.5 

Normalized Spacing 

Fig. 4. Raw spacing statistics for (top) the rectangular cavity, and (bottom) the Sinai billiard 
cavity. 
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plot the raw spacing statistics of the eigenvalues of the rectangle and Sinai 
billiard in terms of the number of eigenvalues vs. the normalized spacing of 
the observed levels. (A much more detailed study of the spacing statistics 
obtained by unfolding the spectrum will be presented elsewhere. Here we 
only discuss the important features and the advantages and limitations of 
the experimental method.) The normalized spacing was simply obtained 
from the actual nearest neighbor spacing by normalizing to the mean 
spacing calculated from all the observed levels. 

The most obvious feature of the data in Fig. 4 is the similarity between 
the spacing statistics of both the integrable (rectangular) cavity and the 
chaotic (Sinai billiard) cavity. This, of course, is not what is expected on 
theoretical grounds, since the rectangle should obey Poisson statistics, 
P(s) oc exp(-s) ,  and the Sinai billiard should obey GOE or Wigner 
statistics, P(s) ocsexp(-rcs2/4). Although the Sinai billiard spacing 
statistics appears to be Wigner-like, so does the spacing statistics for the 
rectangle! The obvious discrepancy is in the rectangle case, where the data 
do not continue to increase as s ~ 0. We believe that the reason for this is 
that closely spaced resonances are missed due to the resonance width 
caused by the absorption. This is most severe when s-~0, and hence 
suppresses the expected Poisson behavior in the case of the rectangle. The 
particular aspect ratio of nearly 2:1 for the rectangle leads to many 
degenerate levels, which of course would not be measured in the experi- 
ment. We are currently carrying out a more detailed study of the spacing 
statistics, and a much more comprehensive analysis of both P(s) and other 
statistical measures will be published elsewhere. 

5. RESULTS FOR THE E I G E N F U N C T I O N S  

The cavity experiments here are particularly powerful ~4) for studying 
eigenfunctions, as the following discussion shows. 

5.1. Rectangular  ( In tegrable )  Cavi ty  

We first illustrate the results by displaying some eigenfunctions of the 
bare rectangular cavity (Fig. 5). In this and all other plots, the positive 
frequency shifts, associated with a B 2 term as discussed in Section 2, have 
been subtracted from the data. The mode structure is clearly identifiable, 
and the mode quantum numbers are easily obtainable. Thus, the two eigen- 
functions shown in Fig. 5 have quantum numbers (2, 8) and (1, 13). The 
eigenfrequencies can be directly calculated since the quantum numbers are 
known, and are 3.053 and 4.482 GHz, which are in agreement with the 
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Frequency: 3.053 GHz Frequency: 4.483 GHz 

Fig. 5. Experimental contour plots of two wavefunctions of the rectangular cavity. 

measured values 3.053 and 4.483 GHz to within 0.1%. The wavefunction 
clearly has the expected sin2(nnx/a)sin2(mn/b) behavior. We have studied 
many more eigenfunctions of the bare rectangle. In each case the results are 
unambiguous, and exactly as expected. 

The control experiments with the rectangle are important in providing 
reassurance of the following points. Once the quantum numbers are iden- 
tified, experiment and theory agree to better than 0.1%. It is also clear that 
the structure of the eigenfunctions is not affected by the absorption in the 
walls or geometric imperfections. Last, but not the least, is the conclusion 
that the measurement technique, i.e., the perturbations introduced by the 
coupling ports and the measuring bead, can be controlled so as to be 
essentially ignorable. We conclude that the measurement method does not 
introduce chaos into the integrable system. (7) 

5.2. Sinai Billiard Cavity 

The wavefunctions of the Sinai billiard cavity display a rich and 
fascinating variety of patterns, as shown in Fig. 6, in contrast to the known 
results for the integrable, rectangular cavity. Shown in Fig. 6 are 36 of 
the lowest-lying eigenfunctions. We have carried out measurements of the 
eigenfunctions up to at least 10 GHz, corresponding to level numbers of 
several hundred. The displayed wavefunctions are illustrative of the features 
that are observed at higher frequencies, although of course the latter are 
more complex. 

Not all of the lowest-lying eigenfunctions are displayed in Fig. 6. The 
wavefunctions corresponding to resonances peaks observed at 1.571, 1.788, 
1.801, 3.829, 4.224, 4.327, and 4.449 GHz were not measurable due to weak 
coupling or strong overlap. Also, the particular geometry chosen has 
accidental near-degeneracies of eigenstates that are either even or odd with 
respect to reflections about the central vertical axis. These levels, although 
distinct in principle, are split by amounts much less than the individual 
resonance widths. For instance, the ground state, which is even-even, 
should have a partner which is odd-even and which has a node along the 
vertical axis. 
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A striking difference between the wavefunctions presented for the 
integrable rectangle system in Fig. 5 and the chaotic system in Fig. 6 is 
that, in the case of the integrable system (Fig. 5), the quantum numbers 
(i.e., for kx and ky) associated with each eigenfunction are immediately 
obtained. Furthermore, knowledge of the quantum numbers yields the 
corresponding eigenvalue, using analytical formulas. In contrast, for the 
chaotic billiard, these quantum numbers do not exist. This is evident from 
the wavefunctions displayed in Fig. 6. Since there are no exact rules of 
quantization, an exact connection between the eigenfunction and the 
corresponding eigenvalue is not possible. This is of course one of the major 
issues in quantum chaos. (In some limited cases such an approximate 
connection is possible, as we discuss below.) 

Lacking a quantitative theory of the wavefunctions of chaotic 
geometries, one can only analyze the observed wavefunctions for general 
trends. The influence of symmetries is evident from the displayed figures. 
The other important guide that can be used is to consider the influence of 
the semiclassical ray or particle dynamics on the wavefunctions. 

One of the remarkable realizations that has been made recently is the 
recognition of the importance of classical periodic orbits (PO) to the quan- 
tum or wave mechanics. The discovery by Heller (3) that wavefunctions of 
chaotic geometries can often be "scarred" along periodic orbits has played 
a central role in analyzing wavefunctions. Some of the shorter PO of the 
Sinai billiard are shown in Fig. 7. In the case of the Sinai billiard, the PO 
can be divided into two major types: those which avoid the central disc and 
only hit the rectangle, and those which also hit the disc. The former are 
nonisolated, since there exist nearby trajectories which have the same 
character. In contrast, PO which hit the central disc are unstable and 
isolated, since nearby trajectories are not periodic. Both these types of PO 
are seen to play a role in the wavefunctions, as discussed below. 

Fig. 7. 

d J 

Some of the periodic orbits of the Sinai billiard which are observed in the wave- 
functions displayed in Fig. 6. 
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5.2.1. N o n i s o l a t e d  PO. Wavefunctions which can be associated 
with PO which only impinge on the outer rectangle are easily recognizable, 
since they retain the character of the wavefunctions of the bare rectangle. 
Besides the lowest four wavefunctions, a particularly striking example is the 
4.028-GHz eigenstate. Here the presence of the disc appears to be entirely 
ignored. This is because it is possible to fit two more maxima into the 
region occupied by the disc. Families of these "rectangular" states can be 
seen, with another example being at 3.212GHz. Another family of 
"quasirectangular" states can be recognized, with members at 3.475 and 
4.074 GHz. These states seem to be distortions of the rectangular wave- 
functions due to the presence of the disc. The well-known "bouncing ball" 
states are easily recognizable at 2.866 and 3.529 GHz. (It should be noted 
that these bouncing ball states also appear to be scarred along the 
diamond-shaped orbit d shown in Fig. 7.) 

One aspect of these wavefunctions is worth noting. It is possible to 
arrive at a reasonably good estimation of the eigenvalues corresponding to 
the above eigenfunctions using the quantization rules for an appropriately 
chosen rectangular area. For instance, one would use the bare rectangular 
area for the "rectangular" states, and the left and right regions only for the 
bouncing ball states. Examples of such estimations are given in ref. 4. 

5.2.2. Scars A long Isolated or Unstab le  PO. The cavity 
experiments discussed here have enabled the direct observation of 
wavefunctions which are scarred along some of the unstable PO specific to 
the Sinai billiard. Among the eigenfunctions displayed in Fig. 6, the PO 
along which scars are observed and the corresponding eigenvalues (the 
labels are from Fig. 7) are (d) 2.866 GHz, (e) 2.695 and 4.342 GHz, (f) 
3.225 GHz, (g) 3.663 GHz, (h) 2.446 and 3.499 GHz, and (j) 2.913 GHz. 
We also note that the scar associated with the PO labeled c is observed in 
the 3.112-GHz state. Although this PO is really nonisolated, its presence is 
peculiar to the Sinai billiard. 

The identification of scars and associated PO is unfortunately not 
enough to permit an estimation of the corresponding eigenvalue. Simple 
quantization along a single PO is inadequate, since the problem is 
inherently 2D and cannot be reduced to 1D. It will also be noticed that a 
given wavefunction may be scarred along more than a single PO. An 
example is the 3.499-GHz state, which is scarred along the POs c and h. 
This is more evident at higher frequencies, where multiple scars may be 
observed in a single wavefunction. 

It is also apparent that there are many wavefunctions where scars can- 
not be clearly identified. (For example, the states at 3.767 GHz appear to 
reflect the circular symmetry of the central disc.) This may be due to the 
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greater instability of the PO in the Sinai billiard, in contrast, say, to 
the Bunimoyich stadium, where apparently a substantial fraction of the 
wavefunctions are scarred. However, this may also be due to the difficulty 
of relying only on visual inspection to identify scars, which becomes 
increasingly difficult when the PO involve multiple bounces, or when more 
than one PO may be involved. Clearly a more quantitative approach is 
needed which does not rely on visual identification alone, and which may 
also enable a match to the corresponding eigenvalues. Some progress in 
"quantizing chaos" has been made using trace formulas for the eigenvalues, 
and it remains to be seen whether comparable success can be achieved for 
the eigenfunctions. 

6. C O N C L U S I O N S  A N D  S U M M A R Y  

The discussion presented in this paper describes the utility of 
electromagnetic experiments studying wave or quantum chaos. Such 
experiments provide a well-controlled means of addressing important issues 
regarding the eigenvalues and eigenfunctions in closed geometries. The 
experiments are particularly powerful in providing direct physical realiza- 
tion of the wavefunctions, in contrast to other (atomic or nuclear) 
phenomena, where the principal observables are usually the eigenvalues 
and their statistics, while details of wavefunctions have indirect consequen- 
ces (8~ on phenomena such as scattering or ionization. The electromagnetic 
experiments have provided the first direct observation (4) of scars proposed 
earlier (3) on theoretical grounds, and underscore the importance of classical 
periodic orbits in the wave or quantum mechanics of classically chaotic 
systems. The results obtained here can be easily scaled down to atomic 
systems. For example, the Sinai billiard geometry studied here is relevant (9t 
to the helium atom. 

Several other developments arising from such experiments are briefly 
mentioned here, and are the subject of future work. A more complete 
examination of the statistics of the eigenvalues and the wavefunctions is 
presently underway. We have also carried out a comparison/1~ with 
numerical simulations, and found excellent agreement both as regards the 
eigenfunctions and the eigenvalue magnitudes. As noted earlier, the 
association of wavefunctions with PO is at the moment based upon visual 
suggestion, and is far from quantitative. It remains to be seen whether 
quantitative rules can be devised, as have recently been proposed in terms 
of trace formulas for the eigenvalues. ~ 

The ability to easily vary parameters of the geometry and to study the 
parameter dependence of the wave dynamics is one of the powerful features 
of the experimental approach. For instance, the Sinai billiard is extremely 

822/68/1-2-17 
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sensitive to small changes in the geometry, and such changes can be easily 
studied. (4) We have found that small changes in the disc location can lead 
to the phenomenon of quantum localization, t4'1~ in which the waves are 
localized, even though the classical trajectories access all of the available 
space. In the experiment it is easy to vary the disc location. Some conse- 
quences of placing the disc in one corner have been presented earlier, (4) and 
a more complete study is ongoing. 

Electromagnetic experiments of the type discussed here can also be 
used to study chaotic scattering in open geometries, as recent work has 
shown. (~2~ Extensions to 3D and the study of wave-packet dynamics are 
also feasible, although it must be noted that then the Maxwell and 
Schr6dinger descriptions would be different. 

The present situation in quantum chaos is reminiscent of an analogous 
period in classical particle chaos, before the discovery of general rules 
such as, for example, period-doubling bifurcations. There, too, analog 
experiments played an important  role in elucidating phenomena, and the 
experiments discussed here may be viewed in a similar context. 
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